\begin{tabbing} ecl{-}halt(${\it ds}$; ${\it da}$; $x$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$ecl\_ind(\=$x$;\+ \\[0ex]$k$,${\it test}$.($\lambda$$n$,$L$. ($n$ = 0 $\in$ $\mathbb{Z}$) \\[0ex]$\wedge$ ($\exists$\=${\it L'}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex]$\exists$\=$s$:decl{-}state(${\it ds}$)\+ \\[0ex]$\exists$\=$v$:ma{-}valtype(${\it da}$; $k$)\+ \\[0ex]((($L$ = append(${\it L'}$; cons($<$$k$, $s$, $v$$>$; [])) $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) \\[0ex]$\wedge$ ($\uparrow$(${\it test}$($s$,$v$)))) \\[0ex]$\wedge$ l\_all(\=${\it L'}$;\+ \\[0ex]event{-}info(${\it ds}$;${\it da}$); \\[0ex]$t$.($\neg$spreadn($t$; ${\it k'}$,$s$,$v$.(($k$ = ${\it k'}$ $\in$ Knd) c$\wedge$ ($\uparrow$(${\it test}$($s$,$v$)))))))))); \-\-\-\-\\[0ex]$a$,$b$,${\it ha}$,${\it hb}$.($\lambda$$n$,$L$. ((0 $<$ $n$) $\wedge$ (${\it ha}$($n$,$L$))) \\[0ex]$\vee$ ($\exists$\=$L_{1}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex]$\exists$\=$L_{2}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex](($L$ = append($L_{1}$; $L_{2}$) $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) \\[0ex]$\wedge$ (${\it ha}$(0,$L_{1}$)) \\[0ex]$\wedge$ (${\it hb}$($n$,$L_{2}$))))); \-\-\\[0ex]$a$,$b$,${\it ha}$,${\it hb}$.($\lambda$$n$,$L$. (($n$ = 0 $\in$ $\mathbb{Z}$) \\[0ex]$\Rightarrow$ \=(((${\it ha}$(0,$L$))\+ \\[0ex]$\wedge$ ($\exists$\=${\it L'}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex](iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) $\wedge$ (${\it hb}$(0,${\it L'}$))))) \-\\[0ex]$\vee$ \=((${\it hb}$(0,$L$))\+ \\[0ex]$\wedge$ ($\exists$\=${\it L'}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex](iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) $\wedge$ (${\it ha}$(0,${\it L'}$))))))) \-\-\-\\[0ex]$\wedge$ \=((0 $<$ $n$)\+ \\[0ex]$\Rightarrow$ \=(((${\it ha}$($n$,$L$))\+ \\[0ex]$\wedge$ \=($\forall$$m$:$\mathbb{N}$, ${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List).\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (${\it hb}$($m$,${\it L'}$)) \\[0ex]$\Rightarrow$ ((${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) $\wedge$ ($n$ $\leq$ $m$)))) \-\\[0ex]$\vee$ \=((${\it hb}$($n$,$L$))\+ \\[0ex]$\wedge$ \=($\forall$$m$:$\mathbb{N}$, ${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List).\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (${\it ha}$($m$,${\it L'}$)) \\[0ex]$\Rightarrow$ ((${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) $\wedge$ ($n$ $\leq$ $m$))))))); \-\-\-\-\\[0ex]$a$,$b$,${\it ha}$,${\it hb}$.($\lambda$$n$,$L$. ((${\it ha}$($n$,$L$)) \\[0ex]$\wedge$ \=($\forall$$m$:$\mathbb{N}$, ${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List).\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (${\it hb}$($m$,${\it L'}$)) \\[0ex]$\Rightarrow$ ((${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) $\wedge$ ($n$ $\leq$ $m$)))) \-\\[0ex]$\vee$ \=((${\it hb}$($n$,$L$))\+ \\[0ex]$\wedge$ \=($\forall$$m$:$\mathbb{N}$, ${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List).\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (${\it ha}$($m$,${\it L'}$)) \\[0ex]$\Rightarrow$ ((${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) $\wedge$ ($n$ $\leq$ $m$))))); \-\-\\[0ex]$a$,${\it ha}$.($\lambda$$n$,$L$. (0 $<$ $n$) $\wedge$ (star{-}append(event{-}info(${\it ds}$;${\it da}$); (${\it ha}$(0)); (${\it ha}$($n$)))($L$))); \\[0ex]$a$,$m$,${\it ha}$.${\it ha}$; \\[0ex]$a$,$m$,${\it ha}$.($\lambda$$n$,$L$. ((0 $<$ $n$) $\wedge$ (${\it ha}$($n$,$L$))) $\vee$ (($n$ = $m$ $\in$ $\mathbb{Z}$) $\wedge$ (${\it ha}$(0,$L$)))); \\[0ex]$a$,$l$,${\it ha}$.($\lambda$$n$,$L$. ((${\it ha}$($n$,$L$)) $\wedge$ ($\neg$($n$ $\in$ $l$ $\in$ $\mathbb{N}$))) \\[0ex]$\vee$ (($n$ = 0 $\in$ $\mathbb{Z}$) $\wedge$ l\_exists($l$; $\mathbb{N}$; $m$.(${\it ha}$($m$,$L$)))))) \- \end{tabbing}